Topics in the June 2010 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2010-J-2:

- Filling Energy Levels in Atoms Larger than Hydrogen
- Nuclear and Radiation Chemistry

2010-J-3:

• Shape of Atomic Orbitals and Quantum Numbers

2010-J-4:

- Bonding MO theory (polar bonds)
- Ionic Bonding
- Periodic Table and the Periodic Trends
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2010-J-5:

- Band Theory MO in Solids
- Liquid Crystals
- Ionic Bonding

2010-J-6:

- Bonding MO theory (H₂)
- Bonding MO theory (larger molecules)

2010-J-7:

Nuclear and Radiation Chemistry

2010-J-8:

2010-J-9:

- Thermochemistry
- First and Second Law of Thermodynamics

2010-J-10:

- Chemical Equilibrium
- Equilibrium and Thermochemistry in Industrial Processes

2010-J-11:

• Chemical Equilibrium

2010-J-12:

• Electrochemistry

2010-J-13:

• Batteries and Corrosion

2010-J-14:

• Types of Intermolecular Forces

June 2010

2010-J-15:

- Gas Laws
- Nitrogen in the AtmosphereThermochemistry

2010-J-1

2205(a)

THE UNIVERSITY OF SYDNEY

CHEMISTRY 1A - CHEM1101

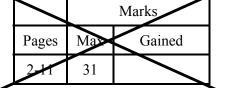
CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2010

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 24 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 19, 23 and 28 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gained		Marker
12	6			
13	6			
14	4			
15	4			
16	6			
17	3			
18	6			
20	4			
21	6			
22	5			
24	2			
25	7			
26	4			
27	6			
Total	69			
Check	total			

Marks

3

• Consider the values of the electronic energy levels of an He atom. State which interactions would be expected to increase the energies of the electrons and which would decrease them.

• Radon gas decays into polonium with a half-life of 3.82 days via the following mechanism: 22

$$^{22}_{86}$$
Rn $\rightarrow ^{218}_{84}$ Po + $^{4}_{2}$ He

Give three reasons why $^{222}_{86}$ Rn is biologically a very harmful nuclide.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

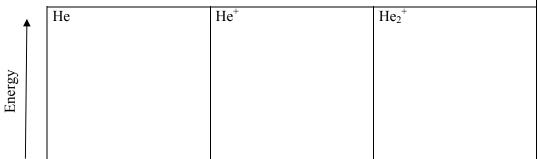
• Sketch the wavefunction of the 3 <i>s</i> atomic orbital as described below. Clearly mark all nodes and the relative sign (+ or –) of the wavefunction.	Marks 6
a) using lobe representations	
b) by plotting wavefunction <i>versus</i> distance from the nucleus	
Explain the significance of (a) the lobes, (b) the nodes and (c) the sign of the wavefunction, in terms of the probability of finding an electron at a given point in space relative to the nucleus.	

• The alkali hydrides are compounds of Group 1 metals with hydrogen in a 1:1 stoichiometry. Selected properties of the elements that make up these compounds are given in the following table.

Element	First Ionisation Energy (kJ mol ⁻¹)	Electron Affinity (kJ mol ⁻¹)	Electronegativity (scale 0-4)
Н	1314	-79	2.20
Li	526	-66	0.98
Na	502	-59	0.93
K	425	-55	0.82
Rb	409	-53	0.82
Cs	382	-52	0.79

Is CsH more or less ionic than LiH? Justify your answer with calculations of their partial ionic character.

Explain the trend in the first ionisation energy of these elements.


• In terms of their electronic origins, briefly explain the concept of allotropes. Use two of the allotropes of carbon as examples.	Marks 2
Describe the nature of an ionic bond in terms of atomic and molecular orbitals.	2

2205(a)

• In order to predict if it is possible to form the He₂⁺ cation, complete the following steps.

In the boxes below, draw an energy level diagram showing labelled electron orbitals and their occupancies for the two reacting species, He and He^+ .

In the other box below, draw an energy level diagram showing labelled electron orbitals and their occupancies in a postulated He_2^+ molecule. Use the same energy scale.

Draw the lobe representation of the two occupied molecular orbitals in this molecule. Show all nuclei and nodal surfaces.

-		-
I		
I		
1		
L		
	What is the bond order of this molecular i	ion'

What is the bond order of this molecular ion?

Make a prediction about the stability of He_2^+ in comparison to the H₂ molecule.

• Consider the process of electron capture by the manganese-54 isotope. Write a balanced nuclear formula.

Explain why the wavelengths of the emitted X-rays after this process are identical to those of the peak X-ray fluorescence emissions obtained during bombardment of Cr by high energy electrons.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Draw a plausible Lewis structures for isocyanic acid, HNCO.				Ma		
What are the NC and CO bond of	orders?	NC:			CO:	
How many lone pairs are on the	nitrogen?					
Using the VSEPR model, what do you predict the H-N-C and N-C-O bond angles to be?	do you predict the H-N-C and			N-C-0):	
Draw two plausible Lewis struct	ures for ni	trous oxi	de, N ₂ O.	(Conn	ectivity: N–N–O)
Assuming these two resonance						
structures contribute equally, what		N:		NC):	
How many lone pairs are on the	central nit	rogen?				
Using the VSEPR model, what c predict the N-N-O bond angle to	•					
Draw two plausible Lewis struct	ures for th	e N ₂ O ²⁻	ion. (Con	nectiv	ity: N–N–O)	
Assuming these two resonance structures contribute equally, wh are the NN and NO bond orders		N:		NC):	
How many lone pairs are on the	central nit	rogen?				
Using the VSEPR model, what c predict the N-N-O bond angle to	-					

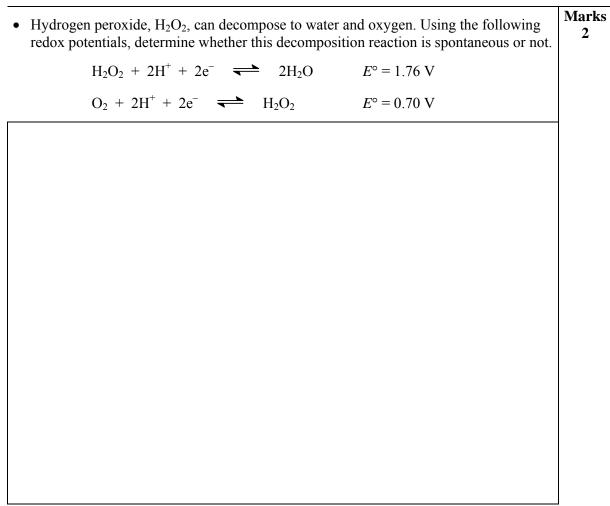
Marks

4

• Ethane C₂H₆ can be burnt in the presence of an excess of oxygen to give CO₂(g) and H₂O(l) or under restricted oxygen conditions to give CO(g) and H₂O(l). A balanced equation for the first process is

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$$

Write a balanced equation for the combustion under restricted oxygen where CO(g) rather than $CO_2(g)$ is produced.


Using the heats of formation, calculate the difference (in kJ per mole of ethane) in heat released by the two different types of combustion of ethane, *i.e.* combustion with excess O_2 and combustion under restricted O_2 conditions.

Compound	$\Delta_{\rm f} H^{\rm o} ({\rm kJ} {\rm mol}^{-1})$
H ₂ O(l)	-285.9
C ₂ H ₆ (g)	-84.67
CO ₂ (g)	-393.5
CO(g)	-110.5

Answer:

Ammonia, $NH_3(g)$, has a standard Gibbs $f = -16.4 \text{ kJ mol}^{-1}$. Consider the following	free energy of formation equal g reaction at 298 K.	Μ
	→ 2NH ₃ (g)	
h which direction will this reaction proce $P_{\rm NH_3} = 1.00 \text{ atm} P_{\rm H_2} = 0.50 \text{ atm} P_{\rm N_2}$	eed if a mixture of gases is made with: $f_2 = 0.50$ atm	
	Answer:	
What pressure of hydrogen gas should be .20 atm NH_3 and 0.50 atm N_2 so that the		
	Answer:	

• Determine the val	ue of the equilib	rium constant (at 2	298 K) for the f	ollowing reaction.	Marks 3
	$CO_2(g) + H$	$I_2O(1)$ \rightleftharpoons H	H ₂ CO ₃ (aq)		
	Substance	$\Delta_{\rm f} H^{\rm o} / {\rm kJ} {\rm mol}^{-1}$	$S^{o} / J K^{-1} mol^{-1}$	1	
	H ₂ CO ₃ (aq)	-700.	187		
	$H_2O(l)$	-286	70.	_	
	$CO_2(g)$	-394	214		-
		Answer:			
• Consider the follo	wing equilibriun	n.			2
$CO(g) + H_2$	D(g) ← C	$O_2(g) + H_2(g)$	$K_{\rm c} = 31.4$	at 588 K	
If a 10.00 L vesse 5.00 mol H ₂ (g) at					
[CO] =	[H ₂ O] =	[CO ₂] =	[H	[2] =	-

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• The net reaction discharging the lead acid storage battery is: $PbO_2 + Pb + 2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$ What reaction occurs at the cathode? What reaction occurs at the anode? Why are the cathode and anode not in separate compartments, as in the Cu/Zn battery? How does H₂SO₄ serve as the 'salt bridge'? Which ions flow in which direction to maintain electroneutrality? What is the formula for the equilibrium constant for the discharge reaction above? The cell potential for this battery is 2.05 V. If the concentration of the H₂SO₄ is 4.5 M, what is the standard potential of the cell at 25 °C? Answer:

CHEM1101

.р. (° С) –188 –85 –	67 –35	24			
		-34	20	59	184
		·			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Page Total:

Marks

4

Marks • You would like to make a gas thermometer using a mole of N₂ at 1 atm. Assuming 2 that you can treat the gas as ideal, determine how much the volume increases (in mL) per degree °C. Answer: • Most of the solar radiation is arriving at the Earth's surface in the form of visible 2 light. Explain, briefly, why the principal contributions to the Greenhouse Effect come from gases that do not absorb in the visible but, instead, in the infrared frequencies. • Consider two blocks of steel: block A is 1.00 kg and block B is 600. g. Both blocks 2 start from the same temperature and are heated so that 600. J flows into each of the blocks in the form of heat. What is the final difference in temperature, T_A - T_B , between block A and block B. The specific heat of steel is $0.460 \text{ J g}^{-1} \text{ K}^{-1}$. Show all working. Answer:

CHEM1101 - CHEMISTRY 1A

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	imal fract	ions	De	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	М					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°					
Reaction	E° / V				
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82				
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72				
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51				
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50				
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36				
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23				
$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$	+1.18				
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96				
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96				
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92				
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80				
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77				
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53				
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34				
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15				
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)				
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s)	0 (by definition) -0.04				
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04				
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.13 -0.14				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.13 -0.14 -0.24				
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.04 -0.13 -0.14 -0.24 -0.40				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.40 -0.44 -0.74 -0.76 -0.83				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \end{array}$				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \end{array}$				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2^{+}}(aq) + 2e^{-} \rightarrow Mg(s)$	$\begin{array}{r} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.36 \end{array}$				
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2^{+}}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{r} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.36 \\ -2.71 \end{array}$				

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry							
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$							
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$							
Radioactivity	Kinetics							
$t_{l_2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$							
$A = \lambda N$	$k = A e^{-Ea/RT}$							
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$							
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$							
Colligative Properties & Solutions	Thermodynamics & Equilibrium							
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
c = kp	$\Delta G^{\circ} = -RT \ln K$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R \ln K$							
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$							
Miscellaneous	Mathematics							
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
$A = \varepsilon c l$	$\ln x = 2.303 \log x$							
$E = -A \frac{e^2}{4\pi \varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2							
$2\pi 4\pi\varepsilon_0 r^{NA}$	Surface area of sphere = $4\pi r^2$							

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	2 1	3 14	15	16	17	18
1 hydrogen H																	2 нешим Не
1.008																	4.003
3	4	1										4		7	8	9	10
LITHIUM	BERYLLIUM Be											вон		N NITROGEN	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10			16.00	19.00	20.18
11	12											1		15	16	17	18
Na	MAGNESIUM Mg											ALUM		PHOSPHORUS	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.			32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30			33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	Fe	COBALT	NICKEL Ni	COPPER Cu					selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.3				78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48			51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	ZIRCONIUM	NIOBIUM Nb	MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	palladium Pd	SILVER Ag	САДМ			ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.				127.60	126.90	131.30
55 CAESIUM	56	57-71	72	73	74	75	76	77	78	79	80			83	84	85	86
CAESIUM	BARIUM Ba		HAFNIUM Hf	TANTALUM Ta	TUNGSTEN W	RHENIUM Re	OSMIUM OS	IRIDIUM Ir	PLATINUM Pt		MERCE H			BISMUTH Bi	POLONIUM PO	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200	,			[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 radium	89-103	104 RUTHERFORDIUM	105 dubnium	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium	110 darmstadtium	111 ROENTGENIU	I 1 COPERN						
Fr	Ra		Rf	Db	Sg	Bh	HASSIUM	M	Dakastabilem	R							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[28	3]					
							1									I	
		7 IANUM	58 CERIUM PR	59 Aseodymium	60 NEODYMIUM	61 promethium	62 SAMARIUM	63 EUROPIUM	GADOLE		65 Erbium	66 dysprosium	67 HOLMIUM	68 Erbium	69 THULIUM	70 ytterbium	71 LUTETIUM
LANTHANO	LDS L		Ce	Pr	Nd	Pm	Sm	Eu	G		Тb	Dy	Но	Er	Tm	Yb	Lu
	138			140.91	144.24	[144.9]	150.4	151.90			58.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINOUS		9 _{NUM} т	90 HORIUM PE	91 отастіним	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIU	96		97 KELLIUM	98 californium	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
ACTINOID	0	c	Th	Pa	U	Np	Pu	Am			Bk	Cf	Es	Fm	Md	No	Lr
	[22	7.0] 2	32.04	[231.0]	238.03	[237.0]	[239.1]	[243.1] [247	.1] [2	47.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

2205(b)